Circuit Theory/Transform Tables

From testwiki
Revision as of 01:39, 9 June 2007 by imported>Whiteknight (Processing page text)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to navigation Jump to search

Template:Circuit Theory/Page

Laplace Transform Appendix

The Laplace Transform is defined as such:

F(s)={f(t)}=0estf(t)dt.

The result of the transform of a time-domain function f(t) is F(s).

Laplace Transform Table

Time Domain Laplace Domain
x(t)=12πjσjσ+jX(s)estds X(s)=x(t)estdt
δ(t) 1
δ(ta) eas
u(t) 1s
u(ta) eass
tu(t) 1s2
tnu(t) n!sn+1
1πtu(t) 1s
eatu(t) 1sa
tneatu(t) n!(sa)n+1
cos(ωt)u(t) ss2+ω2
sin(ωt)u(t) ωs2+ω2
cosh(ωt)u(t) ss2ω2
sinh(ωt)u(t) ωs2ω2
eatcos(ωt)u(t) sa(sa)2+ω2
eatsin(ωt)u(t) ω(sa)2+ω2
12ω3(sinωtωtcosωt) 1(s2+ω2)2
t2ωsinωt s(s2+ω2)2
12ω(sinωt+ωtcosωt) s2(s2+ω2)2

Laplace Transform Properties

Property Definition
Linearity {af(t)+bg(t)}=aF(s)+bG(s)
Differentiation {f}=s{f}f(0)

{f}=s2{f}sf(0)f(0)
{f(n)}=sn{f}sn1f(0)f(n1)(0)

Frequency Division {tf(t)}=F(s)

{tnf(t)}=(1)nF(n)(s)

Frequency Integration {f(t)t}=sF(σ)dσ
Time Integration {0tf(τ)dτ}={u(t)*f(t)}=1sF(s)
Scaling {f(at)}=1aF(sa)
Initial value theorem f(0+)=limssF(s)
Final value theorem f()=lims0sF(s)
Frequency Shifts {eatf(t)}=F(sa)

1{F(sa)}=eatf(t)

Time Shifts {f(ta)u(ta)}=easF(s)

1{easF(s)}=f(ta)u(ta)

Convolution Theorem {f(t)*g(t)}=F(s)G(s)

Where:

f(t)=1{F(s)}
g(t)=1{G(s)}
s=σ+jω

Fourier Transform Appendix

The Fourier Transform is defined as such:

F(jω)={f(t)}=f(t)ejωtdt

The result of the transform of a time-domain function f(t) is F(jω).

Fourier Transform Table

Time Domain Fourier Domain
x(t)=12πX(jω)ejωtdω X(jω)=x(t)ejωtdt
1 2πδ(ω)
0.5+u(t) 1jω
δ(t) 1
δ(tc) ejωc
u(t) πδ(ω)+1jω
ebtu(t) 1jω+b
cosω0t π[δ(ω+ω0)+δ(ωω0)]
cos(ω0t+θ) π[ejθδ(ω+ω0)+ejθδ(ωω0)]
sinω0t jπ[δ(ω+ω0)δ(ωω0)]
sin(ω0t+θ) jπ[ejθδ(ω+ω0)ejθδ(ωω0)]
rect(tτ) τsincτω2π
τsincτt2π 2πpτ(ω)
(12|t|τ)pτ(t) τ2sinc2τω4π
τ2sinc2(τt4π) 2π(12|ω|τ)pτ(ω)
Note: sinc(x)=sin(x)/x ; pτ(t) is the rectangular pulse function of width τ