Digital Signal Processing/Transforms

From testwiki
Revision as of 20:17, 28 August 2006 by imported>Whiteknight (Continuous-Time Fourier Transform (CTFT))
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to navigation Jump to search

Template:DSP Page

This page is going to list some of the transforms from the book, explain their uses, and list some transform pairs of common functions.

Continuous-Time Fourier Transform (CTFT)

Template:Eqn

(ω)=f(t)ejωtdt

CTFT Table

Time Domain Fourier Domain
x(t)=12πX(jω)ejωtdω X(jω)=x(t)ejωtdt
1 2πδ(ω)
0.5+u(t) 1jω
δ(t) 1
δ(tc) ejωc
u(t) πδ(ω)+1jω
ebtu(t) 1jω+b
cosω0t π[δ(ω+ω0)+δ(ωω0)]
cos(ω0t+θ) π[ejθδ(ω+ω0)+ejθδ(ωω0)]
sinω0t jπ[δ(ω+ω0)δ(ωω0)]
sin(ω0t+θ) jπ[ejθδ(ω+ω0)ejθδ(ωω0)]
rect(tτ) τsincτω2π
τsincτt2π 2πpτ(ω)
(12|t|τ)pτ(t) τ2sinc2τω4π
τ2sinc2(τt4π) 2π(12|ω|τ)pτ(ω)
Note: sinc(x)=sin(x)/x ; pτ(t) is the rectangular pulse function of width τ

Discrete-Time Fourier Transform (DTFT)

DTFT Table

Time domain
x[n]
Frequency domain
X(ω)
Remarks
δ[n] 1
δ[nk] eikω integer k
u[n] 11eiω
ean δ(ω+a) real number a
cos(an) 12[δ(ωa)+δ(ω+a)] real number a
sin(an) 12i[δ(ωa)δ(ω+a)] real number a
rect[(nM/2)M] sin[ω(M+1)/2]sin(ω/2)eiωM/2 integer M
sinc[(a+n)] eiaω real number a
Wsinc2(Wn) 12πWtri(ω2πW) real number W
Wsinc[W(n+a)] rect(ω2πW)ejaω real numbers W, a

0<W1

W(n+a){cos[πW(n+a)]sinc[W(n+a)]} jωrect(ωπW)ejaω real numbers W, a
1πn2[(1)n1] |ω|
C(A+B)2πsinc[AB2πn]sinc[A+B2πn] real numbers A, B
complex C

DTFT Properties

Property Time domain
x[n]
Frequency domain
X(ω)
Remarks
Linearity ax[n]+by[n] aX(eiω)+bY(eiω)
Shift in time x[nk] X(eiω)eiωk integer k
Shift in frequency x[n]eian X(ei(ωa)) real number a
Time reversal x[n] X(eiω)
Time conjugation x[n]* X(eiω)*
Time reversal & conjugation x[n]* X(eiω)*
Derivative in frequency nix[n] dX(eiω)dω
Integral in frequency inx[n] πωX(eiϑ)dϑ
Convolve in time x[n]*y[n] X(eiω)Y(eiω)
Multiply in time x[n]y[n] 12πX(eiω)*Y(eiω)
Correlation ρxy[n]=x[n]**y[n] Rxy(ω)=X(eiω)*Y(eiω)

Where:

  • * is the convolution between two signals
  • x[n]* is the complex conjugate of the function x[n]
  • ρxy[n] represents the correlation between x[n] and y[n].

Discrete Fourier Transform (DFT)

DFT Table

Time-Domain
x[n]
Frequency Domain
X[k]
Notes
xn1Nk=0N1Xkei2πkn/N Xkn=0N1xnei2πkn/N DFT Definition
xnei2πkn/N Xnk Shift theorem
xnk Xkei2πkn/N
xn𝐑 Xk=XNk* Real DFT
an 1aN1aei2πk/N  
(N1n) (1+ei2πk/N)N1  

Z-Transform

Z-Transform Table

Signal, x[n] Z-transform, X(z) ROC
1 δ[n] 1 all z
2 δ[nn0] 1zn0 all z
3 u[n] zz1 |z|>1
4 anu[n] 11az1 |z|>|a|
5 nanu[n] az1(1az1)2 |z|>|a|
6 anu[n1] 11az1 |z|<|a|
7 nanu[n1] az1(1az1)2 |z|<|a|
8 cos(ω0n)u[n] 1z1cos(ω0)12z1cos(ω0)+z2 |z|>1
9 sin(ω0n)u[n] z1sin(ω0)12z1cos(ω0)+z2 |z|>1
10 ancos(ω0n)u[n] 1az1cos(ω0)12az1cos(ω0)+a2z2 |z|>|a|
11 ansin(ω0n)u[n] az1sin(ω0)12az1cos(ω0)+a2z2 |z|>|a|

Bilinear Transform

Discrete Cosine Transform (DCT)

Haar Transform