This quantum world/Feynman route/Action
Action
Let's go back to the propagator
For a free and stable particle we found that
where is the proper-time interval associated with the path element . For the general case we found that the amplitude is a function of and or, equivalently, of the coordinates , the components of the 4-velocity, as well as . For a particle that is stable but not free, we obtain, by the same argument that led to the above amplitude,
where we have introduced the functional , which goes by the name action.
For a free and stable particle, is the proper time (or proper duration) multiplied by , and the infinitesimal action is proportional to :
Let's recap. We know all about the motion of a stable particle if we know how to calculate the probability (in all circumstances). We know this if we know the amplitude . We know the latter if we know the functional . And we know this functional if we know the infinitesimal action or (in all circumstances).
What do we know about ?
The multiplicativity of successive propagators implies the additivity of actions associated with neighboring infinitesimal path segments and . In other words,
implies
It follows that the differential is homogeneous (of degree 1) in the differentials :
This property of makes it possible to think of the action as a (particle-specific) length associated with , and of as defining a (particle-specific) spacetime geometry. By substituting for we get:
Something is wrong, isn't it? Since the right-hand side is now a finite quantity, we shouldn't use the symbol for the left-hand side. What we have actually found is that there is a function , which goes by the name Lagrange function, such that .