This quantum world/Feynman route/Whence the classical story
Whence the classical story?
Imagine a small rectangle in spacetime with corners
Let's calculate the electromagnetic contribution to the action of the path from to via for a unit charge () in natural units ( ):
Next, the contribution to the action of the path from to via :
Look at the difference:
Alternatively, you may think of as the electromagnetic contribution to the action of the loop
Let's repeat the calculation for a small rectangle with corners
Thus the electromagnetic contribution to the action of this loop equals the flux of through the loop.
Remembering (i) Stokes' theorem and (ii) the definition of in terms of we find that
In (other) words, the magnetic flux through a loop (or through any surface bounded by ) equals the circulation of around the loop (or around any surface bounded by the loop).
The effect of a circulation around the finite rectangle is to increase (or decrease) the action associated with the segment relative to the action associated with the segment If the actions of the two segments are equal, then we can expect the path of least action from to to be a straight line. If one segment has a greater action than the other, then we can expect the path of least action from to to curve away from the segment with the larger action.
Compare this with the classical story, which explains the curvature of the path of a charged particle in a magnetic field by invoking a force that acts at right angles to both the magnetic field and the particle's direction of motion. The quantum-mechanical treatment of the same effect offers no such explanation. Quantum mechanics invokes no mechanism of any kind. It simply tells us that for a sufficiently massive charge traveling from to the probability of finding that it has done so within any bundle of paths not containing the action-geodesic connecting with is virtually 0.
Much the same goes for the classical story according to which the curvature of the path of a charged particle in a spacetime plane is due to a force that acts in the direction of the electric field. (Observe that curvature in a spacetime plane is equivalent to acceleration or deceleration. In particular, curvature in a spacetime plane containing the axis is equivalent to acceleration in a direction parallel to the axis.) In this case the corresponding circulation is that of the 4-vector potential around a spacetime loop.