Trigonometry/Trigonometric Identities Reference

From testwiki
Revision as of 18:47, 8 November 2007 by 75.34.29.91 (talk) (Sum and difference to product)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to navigation Jump to search

Pythagoras

  1. sin2(x)+cos2(x)=1
  2. 1+tan2(x)=sec2(x)
  3. 1+cot2(x)=csc2(x)

These are all direct consequences of Pythagoras's theorem.

Sum/Difference of angles

  1. cos(x±y)=cos(x)cos(y)sin(x)sin(y)
  2. sin(x±y)=sin(x)cos(y)±sin(y)cos(x)
  3. tan(x±y)=tan(x)±tan(y)1tan(x)tan(y)

Product to Sum

  1. 2sin(x)sin(y)=cos(xy)cos(x+y)
  2. 2cos(x)cos(y)=cos(xy)+cos(x+y)
  3. 2sin(x)cos(y)=sin(xy)+sin(x+y)

Sum and difference to product

  1. Asin(x)+Bcos(x)=Csin(x+y), where C=A2+B2 and y=±arctan(B/A)
  2. sinα+sinβ=2sinα+β2cosαβ2
  3. sinαsinβ=2cosα+β2sinαβ2
  4. cosα+cosβ=2cosα+β2cosαβ2
  5. cosαcosβ=2sinα+β2sinαβ2

Double angle

  1. cos(2x)=cos2(x)sin2(x)=2cos2(x)1=12sin2(x)
  2. sin(2x)=2sin(x)cos(x)
  3. tan(2x)=2tan(x)1tan2(x)

These are all direct consequences of the sum/difference formulae

Half angle

  1. cos(x2)=±1+cos(x)2
  2. sin(x2)=±1cos(x)2
  3. tan(x2)=1cos(x)sin(x)=sin(x)1+cos(x)=±1cos(x)1+cos(x)

In cases with ±, the sign of the result must be determined from the value of x2. These derive from the cos(2x) formulae.

Power Reduction

  1. sin2θ=1cos2θ2
  2. cos2θ=1+cos2θ2
  3. tan2θ=1cos2θ1+cos2θ

Even/Odd

  1. sin(θ)=sin(θ)
  2. cos(θ)=cos(θ)
  3. tan(θ)=tan(θ)
  4. csc(θ)=csc(θ)
  5. sec(θ)=sec(θ)
  6. cot(θ)=cot(θ)

Calculus

  1. ddx[sinx]=cosx
  2. ddx[cosx]=sinx
  3. ddx[tanx]=sec2x
  4. ddx[secx]=secxtanx
  5. ddx[cscx]=cscxcotx
  6. ddx[cotx]=csc2x

Template:Trigonometry:Navigation