Calculus/Differentiation:Solutions
From testwiki
Revision as of 05:32, 5 May 2007 by
imported>Hagindaz
(Reverted edit of
76.5.105.107
, changed back to last version by 71.237.42.38)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to navigation
Jump to search
Set One: Find The Derivative By Definiton
1. 2x
f
(
x
)
=
x
2
=
lim
Δ
x
→
0
(
x
+
Δ
x
)
2
−
x
2
Δ
x
=
lim
Δ
x
→
0
x
2
+
2
x
Δ
x
+
Δ
x
2
−
x
2
Δ
x
=
lim
Δ
x
→
0
2
x
Δ
x
+
Δ
x
2
Δ
x
=
lim
Δ
x
→
0
2
x
+
Δ
x
=
2
x
2. 2
f
(
x
)
=
2
x
+
2
f
′
(
x
)
=
lim
Δ
x
→
0
[
2
(
x
+
Δ
x
)
+
2
]
−
(
2
x
+
2
)
Δ
x
=
lim
Δ
x
→
0
2
x
+
2
Δ
x
+
2
−
2
x
−
2
Δ
x
=
lim
Δ
x
→
0
2
Δ
x
Δ
x
=
2
3. x
f
(
x
)
=
1
2
x
2
f
′
(
x
)
=
lim
Δ
x
→
0
1
2
(
x
+
Δ
x
)
2
−
1
2
x
2
Δ
x
=
lim
Δ
x
→
0
1
2
(
x
2
+
2
x
Δ
x
+
Δ
x
2
)
−
1
2
x
2
Δ
x
=
lim
Δ
x
→
0
x
2
2
+
2
x
Δ
x
2
+
Δ
x
2
2
−
x
2
2
Δ
x
=
lim
Δ
x
→
0
2
x
Δ
x
+
Δ
x
2
2
Δ
x
=
lim
Δ
x
→
0
x
+
Δ
x
=
x
4. 4x + 4
f
(
x
)
=
2
x
2
+
4
x
+
4
f
′
(
x
)
=
lim
Δ
x
→
0
[
2
(
x
+
Δ
x
)
2
+
4
(
x
+
Δ
x
)
+
4
]
−
(
2
x
2
+
4
x
+
4
)
Δ
x
=
lim
Δ
x
→
0
2
(
x
2
+
2
x
Δ
x
+
Δ
x
2
)
+
4
x
+
4
Δ
x
+
4
−
2
x
2
−
4
x
−
4
Δ
x
=
lim
Δ
x
→
0
2
x
2
+
4
x
Δ
x
+
2
Δ
x
2
+
4
Δ
x
−
2
x
2
Δ
x
=
lim
Δ
x
→
0
4
x
Δ
x
+
2
Δ
x
2
+
4
Δ
x
Δ
x
=
lim
Δ
x
→
0
4
x
+
2
Δ
x
+
4
=
4
x
+
4
Set Two: Find The Derivative By Rules
4
x
1
x
2
3
1
x
2
3
−
2
x
3
1
x
−
2
e
x
+
1
2
x
cos
(
x
)
−
sin
(
x
)
2
(
x
+
5
)
2
x
2
1
+
x
2
x
3
y
+
2
y
3
x
2
−
8
x
y
5
+
1
y
4
x
2
2
x
2
+
1
(
3
y
4
+
2
y
)
(
1
2
y
3
+
2
)
+
2
x
(
3
y
4
+
2
y
)
2
x
2
+
1
ln
(
4
)
4
x
2
x
−
3
9
x
2
2
x
3
−
2
+
3
ln
(
2
)
x
3
−
2
(
2
x
−
3
)
+
1
x
4
x
e
x
y
2
z
3
+
2
x
e
x
y
z
4
+
(
x
e
x
y
2
z
4
+
e
x
y
2
z
4
)
1
x
ln
4
+
2
x
3
e
x
+
4
sin
(
x
)
−
1
4
x
Set Three: Higher Order Derivatives
[Solutions Here]
Template:Calculus:TOC
Category
:
Calculus
Navigation menu
Personal tools
Log in
Namespaces
Page
Discussion
English
Views
Read
View source
View history
More
Search
Navigation
Main page
Recent changes
Random page
Help about MediaWiki
Special pages
Tools
What links here
Related changes
Printable version
Permanent link
Page information
Cite this page