Solving Integrals by Trigonometric substitution/Basic trigonometric integrals
From testwiki
Revision as of 22:37, 10 October 2007 by
imported>Mike.lifeguard
(+cat)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to navigation
Jump to search
This module contains a list of basic trigonometric integrals.
Contents
1
Integrals of Sine
2
Integrals of Cosine
3
Integrals of Tangent
4
Integrals of Secant
5
Integrals of Cosecant
6
Integrals of Cotangent
Integrals of Sine
∫
sin
c
x
d
x
=
−
1
c
cos
c
x
∫
sin
n
c
x
d
x
=
−
sin
n
−
1
c
x
cos
c
x
n
c
+
n
−
1
n
∫
sin
n
−
2
c
x
d
x
(for
n
>
0
)
Integrals of Cosine
∫
cos
c
x
d
x
=
1
c
sin
c
x
∫
cos
n
c
x
d
x
=
−
cos
n
−
1
c
x
sin
c
x
n
c
+
n
−
1
n
∫
cos
n
−
2
c
x
d
x
(for
n
>
0
)
Integrals of Tangent
∫
tan
c
x
d
x
=
−
1
c
ln
|
cos
c
x
|
∫
tan
n
c
x
d
x
=
1
c
(
n
−
1
)
tan
n
−
1
c
x
−
∫
tan
n
−
2
c
x
d
x
(for
n
≠
1
)
Integrals of Secant
∫
sec
c
x
d
x
=
1
c
ln
|
sec
c
x
+
tan
c
x
|
∫
sec
n
c
x
d
x
=
sec
n
−
1
c
x
sin
c
x
c
(
n
−
1
)
+
n
−
2
n
−
1
∫
sec
n
−
2
c
x
d
x
(for
n
≠
1
)
Integrals of Cosecant
∫
csc
c
x
d
x
=
−
1
c
ln
|
csc
c
x
+
cot
c
x
|
∫
csc
n
c
x
d
x
=
−
csc
n
−
1
c
x
cos
c
x
c
(
n
−
1
)
+
n
−
2
n
−
1
∫
csc
n
−
2
c
x
d
x
(for
n
≠
1
)
Integrals of Cotangent
∫
cot
c
x
d
x
=
1
c
ln
|
sin
c
x
|
∫
cot
n
c
x
d
x
=
−
1
c
(
n
−
1
)
cot
n
−
1
c
x
−
∫
cot
n
−
2
c
x
d
x
(for
n
≠
1
)
Template:Wikipedia
Template:Subject
Navigation menu
Personal tools
Log in
Namespaces
Page
Discussion
English
Views
Read
View source
View history
More
Search
Navigation
Main page
Recent changes
Random page
Help about MediaWiki
Special pages
Tools
What links here
Related changes
Printable version
Permanent link
Page information
Cite this page