Solving Integrals by Trigonometric substitution/Recognising cases

From testwiki
Revision as of 22:37, 10 October 2007 by imported>Mike.lifeguard (+cat)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to navigation Jump to search

The most important thing about using a technique to integrate is recognising when it will be most useful.

Examples

Below are examples of possible substitutions.

  • x=asinu
    • dx=acosudu
    • a2x2=acosu
    • Identity: a2sin2θ+a2cos2θ=a2
  • x=acosu
    • dx=asinudu
    • a2x2=asinu
    • Identity:: a2sin2θ+a2cos2θ=a2
  • x=atanu
    • dx=asec2udu
    • a2+x2=asecu
    • Identity:: a2tan2θ+a2=a2sec2θ
  • x=asecu
    • dx=atanusecudu
    • x2a2=atanu
    • Identity:: a2tan2θ+a2=a2sec2θ

Template:Subject