Python Programming/Sets
Template:Python Programming/Navigation
Python also has an implementation of the mathematical set. Unlike sequence objects such as lists and tuples, in which each element is indexed, a set is an unordered collection of objects. Sets also cannot have duplicate members - a given object appears in a set 0 or 1 times. For more information on sets, see the Set Theory wikibook.
Constructing Sets
One way to construct sets is by passing any sequential object to the "set" constructor.
>>> set([0, 1, 2, 3])
set([0, 1, 2, 3])
>>> set("obtuse")
set(['b', 'e', 'o', 's', 'u', 't'])
We can also add elements to sets one by one, using the "add" function.
>>> s = set([12, 26, 54])
>>> s.add(32)
>>> s
set([32, 26, 12, 54])
Note that since a set does not contain duplicate elements, if we add one of the members of s to s again, the add function will have no effect. This same behavior occurs in the "update" function, which adds a group of elements to a set.
>>> s.update([26, 12, 9, 14])
>>> s
set([32, 9, 12, 14, 54, 26])
Note that you can give any type of sequential structure, or even another set, to the update function, regardless of what structure was used to initialize the set.
The set function also provides a copy constructor. However, remember that the copy constructor will copy the set, but not the individual elements.
>>> s2 = s.copy()
>>> s2
set([32, 9, 12, 14, 54, 26])
Membership Testing
We can check if an object is in the set using the same "in" operator as with sequential data types.
>>> 32 in s
True
>>> 6 in s
False
>>> 6 not in s
True
We can also test the membership of entire sets. Given two sets and , we check if is a subset or a superset of .
>>> s.issubset(set([32, 8, 9, 12, 14, -4, 54, 26, 19]))
True
>>> s.issuperset(set([9, 12]))
True
Note that "issubset" and "issuperset" can also accept sequential data types as arguments
>>> s.issuperset([32, 9])
True
Note that the <= and >= operators also express the issubset and issuperset functions respectively.
>>> set([4, 5, 7]) <= set([4, 5, 7, 9])
True
>>> set([9, 12, 15]) >= set([9, 12])
True
Like lists, tuples, and string, we can use the "len" function to find the number of items in a set.
Removing Items
There are three functions which remove individual items from a set, called pop, remove, and discard. The first, pop, simply removes an item from the set. Note that there is no defined behavior as to which element it chooses to remove.
>>> s = set([1,2,3,4,5,6])
>>> s.pop()
1
>>> s
set([2,3,4,5,6])
We also have the "remove" function to remove a specified element.
>>> s.remove(3)
>>> s
set([2,4,5,6])
However, removing a item which isn't in the set causes an error.
>>> s.remove(9)
Traceback (most recent call last):
File "<stdin>", line 1, in ?
KeyError: 9
If you wish to avoid this error, use "discard." It has the same functionality as remove, but will simply do nothing if the element isn't in the set
We also have another operation for removing elements from a set, clear, which simply removes all elements from the set.
>>> s.clear()
>>> s
set([])
Iteration Over Sets
We can also have a loop move over each of the items in a set. However, since sets are unordered, it is undefined which order the iteration will follow.
>>> s = set("blerg")
>>> for n in s:
... print n,
...
r b e l g
Set Operations
Python allows us to perform all the standard mathematical set operations, using members of set. Note that each of these set operations has several forms. One of these forms, s1.function(s2) will return another set which is created by "function" applied to and . The other form, s1.function_update(s2), will change to be the set created by "function" of and . Finally, some functions have equivalent special operators. For example, s1 & s2 is equivalent to s1.intersection(s2)
Union
The union is the merger of two sets. Any element in or will appear in their union.
>>> s1 = set([4, 6, 9])
>>> s2 = set([1, 6, 8])
>>> s1.union(s2)
set([1, 4, 6, 8, 9])
>>> s1 | s2
set([1, 4, 6, 8, 9])
Note that union's update function is simply "update" above.
Intersection
Any element which is in both and will appear in their intersection.
>>> s1 = set([4, 6, 9])
>>> s2 = set([1, 6, 8])
>>> s1.intersection(s2)
set([6])
>>> s1 & s2
set([6])
>>> s1.intersection_update(s2)
>>> s1
set([6])
Symmetric Difference
The symmetric difference of two sets is the set of elements which are in one of either set, but not in both.
>>> s1 = set([4, 6, 9])
>>> s2 = set([1, 6, 8])
>>> s1.symmetric_difference(s2)
set([8, 1, 4, 9])
>>> s1 ^ s2
set([8, 1, 4, 9])
>>> s1.symmetric_difference_update(s2)
>>> s1
set([8, 1, 4, 9])
Set Difference
Python can also find the set difference of and , which is the elements that are in but not in .
>>> s1 = set([4, 6, 9])
>>> s2 = set([1, 6, 8])
>>> s1.difference(s2)
set([9, 4])
>>> s1 - s2
set([9, 4])
>>> s1.difference_update(s2)
>>> s1
set([9, 4])