Signals and Systems/Table of Laplace Transforms

From testwiki
Revision as of 20:54, 2 August 2006 by imported>Whiteknight (Table of Laplace Transforms)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to navigation Jump to search

Template:Signals and Systems Page

Laplace Transform

F(s)={f(t)}=0estf(t)dt.

Inverse Laplace Transform

1{F(s)}=12πcic+ieftF(s)ds=f(t)

Laplace Transform Properties

Property Definition
Linearity {af(t)+bg(t)}=aF(s)+bG(s)
Differentiation {f}=s{f}f(0)

{f}=s2{f}sf(0)f(0)
{f(n)}=sn{f}sn1f(0)f(n1)(0)

Frequency Division {tf(t)}=F(s)

{tnf(t)}=(1)nF(n)(s)

Frequency Integration {f(t)t}=sF(σ)dσ
Time Integration {0tf(τ)dτ}={u(t)*f(t)}=1sF(s)
Scaling {f(at)}=1aF(sa)
Initial value theorem f(0+)=limssF(s)
Final value theorem f()=lims0sF(s)
Frequency Shifts {eatf(t)}=F(sa)

1{F(sa)}=eatf(t)

Time Shifts {f(ta)u(ta)}=easF(s)

1{easF(s)}=f(ta)u(ta)

Convolution Theorem {f(t)*g(t)}=F(s)G(s)

Where:

f(t)=1{F(s)}
g(t)=1{G(s)}
s=σ+jω

Table of Laplace Transforms

Time Domain Laplace Domain
x(t)=12πjσjσ+jX(s)estds X(s)=x(t)estdt
δ(t) 1
δ(ta) eas
u(t) 1s
u(ta) eass
tu(t) 1s2
tnu(t) n!sn+1
1πtu(t) 1s
eatu(t) 1sa
tneatu(t) n!(sa)n+1
cos(ωt)u(t) ss2+ω2
sin(ωt)u(t) ωs2+ω2
cosh(ωt)u(t) ss2ω2
sinh(ωt)u(t) ωs2ω2
eatcos(ωt)u(t) sa(sa)2+ω2
eatsin(ωt)u(t) ω(sa)2+ω2
12ω3(sinωtωtcosωt) 1(s2+ω2)2
t2ωsinωt s(s2+ω2)2
12ω(sinωt+ωtcosωt) s2(s2+ω2)2