Trigonometry/Sum and Difference Formulas
Cosine Formulas
Sine Formulas
Tangent Formulas
Derivations
- cos(a + b) = cos a cos b - sin a sin b
- cos(a - b) = cos a cos b + sin a sin b
Using cos(a + b) and the fact that cosine is even and sine is odd, we have
cos(a + (-b)) = cos a cos (-b) - sin a sin (-b)
= cos a cos b - sin a (-sin b)
= cos a cos b + sin a sin b
- sin(a + b) = sin a cos b + cos a sin b
Using cofunctions we know that sin a = cos (90 - a). Use the formula for cos(a - b) and cofunctions we can write
sin(a + b) = cos(90 - (a + b))
= cos((90 - a) - b)
= cos(90 -a)cos b + sin(90 - a)sin b
= sin a cos b + cos a sin b
- sin(a - b) = sin a cos b - cos a sin b
Having derived sin(a + b) we replace b with "-b" and use the fact that cosine is even and sine is odd.
sin(a + (-b)) = sin a cos (-b) + cos a sin (-b)
= sin a cos b + cos a (-sin b)
= sin a cos b - cos a sin b
make sure when you are applying this formula you admit one cos to 4 -sin Template:Trigonometry:Navigation