Trigonometry/Sum and Difference Formulas

From testwiki
Jump to navigation Jump to search

Cosine Formulas

cos(A+B)=cosAcosBsinAsinB
cos(AB)=cosAcosB+sinAsinB
cos2A=cos2Asin2A=2cos2A1=12sin2A
cosA2=±1+cosA2

Sine Formulas

sin(a+b)=sinacosb+cosasinb

sin(ab)=sinacosbcosasinb

sin2a=2sinacosa

sinA2=±1cosA2

Tangent Formulas

tan(a+b)=tan(a)+tan(b)1tan(a)tan(b)
tan(ab)=tan(a)tan(b)1+tan(a)tan(b)
tan2A=2tanA1tan2A=2cotAcot2A1=2cotAtanA
tanA2=±1cosA1+cosA=sinA1+cosA=1cosAsinA

Derivations

  • cos(a + b) = cos a cos b - sin a sin b
  • cos(a - b) = cos a cos b + sin a sin b

Using cos(a + b) and the fact that cosine is even and sine is odd, we have

            cos(a + (-b)) = cos a cos (-b) - sin a sin (-b)
                          = cos a cos b - sin a (-sin b)
                          = cos a cos b + sin a sin b
  • sin(a + b) = sin a cos b + cos a sin b

Using cofunctions we know that sin a = cos (90 - a). Use the formula for cos(a - b) and cofunctions we can write

         sin(a + b) = cos(90 - (a + b))
                    = cos((90 - a) - b)
                    = cos(90 -a)cos b + sin(90 - a)sin b
                    = sin a cos b + cos a sin b
  • sin(a - b) = sin a cos b - cos a sin b

Having derived sin(a + b) we replace b with "-b" and use the fact that cosine is even and sine is odd.

      sin(a + (-b)) = sin a cos (-b) + cos a sin (-b) 
                    = sin a cos b + cos a (-sin b)
                    = sin a cos b - cos a sin b

make sure when you are applying this formula you admit one cos to 4 -sin Template:Trigonometry:Navigation