Calculus/Answers to introductory concepts

From testwiki
Jump to navigation Jump to search

Differentiation

Proof of the Derivative of a Constant Function

If c=f(x), then
ddx[c] =f(x)
  =limΔx0f(x+Δx)f(x)Δx
  =limΔx0ccΔx
  =limΔx00
  =0

Proof of the Derivative of a Linear Function

If mx+b=f(x), then
ddx(mx+b) =f(x)
=limΔx0f(x+Δx)f(x)Δx
=limΔx0[m(x+Δx)+b][mx+b]Δx
=limΔx0mx+mΔx+bmxbΔx
=limΔx0mΔxΔx
=limΔx0m
=m

Proof of the Constant Multiple Rule

ddx[cf(x)] = limΔx0cf(x+Δx)cf(x)Δx
= climΔx0f(x+Δx)f(x)Δx
= cddx[f(x)]

Proof of the Addition and Subtraction Rules

ddx[f(x)±g(x)] = limΔx0[f(x+Δx)+g(x+Δx)][f(x)+g(x)]Δx
= limΔx0f(x+Δx)+g(x+Δx)f(x)g(x)Δx
= limΔx0[f(x+Δx)f(x)Δx+g(x+Δx)g(x)Δx]
= limΔx0f(x+Δx)f(x)Δx+limΔx0g(x+Δx)g(x)Δx
= ddx[f(x)]+ddx[g(x)]