Complex Analysis Handbook/Basic Arithmetic

From testwiki
Jump to navigation Jump to search

Complex Conjugate

Let: z¯ be the complex conjugate of z  then

(z1±z2)=z1¯±z2¯

(z1z2)=z1¯z2¯

Argand Representation

p=x +iy

r:=x2+y2, θ :=arctan(y/x)

p  =r(cosθ +isinθ )=rcisθ 
=reiθ 

We call r  absolute value (or modulus) and θ  argument of z 


z1z2=r1r2cis(θ1 +θ2)=r1r2(cos(θ1+θ2)+isin(θ1+θ2))

z1z2=r1r2cis(θ1θ2)

1z=1rcis(θ )

So

zn=rncis(nθ )=rn(cosnθ +isinnθ )

For any complex variable z=x+iy it is possible to express x and y in terms of z and z¯, as follows:

x=z+z¯2 and y=zz¯2i

Inequalities

|z1+z2||z1|+|z2|

|z1z2|||z1||z2||0