Fundamentals of Transportation/Operations

From testwiki
Jump to navigation Jump to search

Capacitated (finite) queues (M/M/1) (random arrival and random service), with capacity N

Probability of n units in the system P(n)=ρn(1ρ)1ρN+1 Expected number of units in the system E(n)=(ρ)(1ρ)1(N+1)(ρ)N+NρN+11ρN+1


Gaps

P(x)=λtxeλtx!forx=0,1,2,


Failed to parse (unknown function "\begin{array}"): {\displaystyle \begin{array}{l} {\rm{P(x = 0) = }}\lambda {\rm{e}}^{{\rm{ - }}\lambda {\rm{t}}} \\ {\rm{Freq (h \ge t) = (V - 1) e}}^{{\rm{ - }}\lambda {\rm{t}}} \\ {\rm{Freq (h \lt t) = (V - 1) (1 - e}}^{{\rm{ - }}\lambda {\rm{t}}} {\rm{)}} \\ \\ \end{array} }

Level of Service

PHF=V/(4V15) where: V=HourlyVolume

SF=V/PHF=4V15

MSF=cj(v/c)i

SFi=MSFiNfwfHVfp

SFi=cj(v/c)iNfwfHVfp

fHV=11+PT(ET1)+PR(ER1)


FFS=FFSifLWfLCfMfA

TLC=LCR+LCL

NAPM40:fA=0.25NAPM

NAPM>40;fA=10

vp=VPHFNfHVfp
SFi=2800(vc)ifdfwfHV


K=DHV/AADT


fHV=11+PT(ET1)+PR(ER1)+PB(EB1)

Traffic Signals

tc=ρr1ρ

Pq=r+tcC

Ps=λ(r+tC)λ(r+g)=r+tCC=Pq

Ps=λ(r+tC)λ(r+g)=μtCλC=μtCρC

Qmax=λr

Dt=λr22(1ρ)

davg=λr22(1ρ)1λC

davg=r22C(1ρ)

dmax=r

c=sgC

d=(d1PF)+d2+d3

d1=0.5C(1gC)21[min(1,X)gC]

d2=900T[(X1)+(X1)2+8kIXcT]

dA=idiviivi

dI=AdAvAAvA

Yc=i=1n(vs)ci

L=i=1n(tL)ci

Cmin=L*XcXci=1nYi

Copt=[(1.5L)+5](1.0i=1nYi)

Cmin=LXc(XcYi)

Xi=vici=visi*gi/C=vi/sigi/C

gi=visiCXc=CL

Xc=visiCCL