Strength of materials/Weakest link determination by use of three parameter Weibull statistics

From testwiki
Jump to navigation Jump to search

Remark: Be carefull! This is an article under development. Pirote8 (talk) 19:21, 16 January 2008 (UTC)


When for a particular property a material shows a large scatter in measured data (e.g. strength measurement results of brittle materials, or of threads with important variations in thickness), a characteristic value for, or the weakest link of such a property can be obtained by analyzing the measured data on the basis of three parameter Weibull statistics.

Introduction

When a material is subject for strength determination, series of strength measurements will show a scatter. When the scatter is low compared with the average value of the series, a minimum strength value fmin may be defined by:

(1) fmin=fau.s

in which fa is the average strength, s is the standard deviation of the measurement series, and u is the factor related to the probability of not failing (e.g. relates to a fail probability of 0.0001)

However, a number of materials, e.g. threads with important variations in thickness, brittle materials as annealed glass, will show a large, or even a very large scatter compared with the average value of the series. And even the scatter of the average values of a number of series of measurements may show such an important scatter compared with the overall average value, that applying expression (1) leads to a nonsensical minimum strength.

In those cases, strength measurements series may be described by two parameter Weibull distributions that indicate that the minimum value approaches to zero, or:

(2) F(f;α,β)=1exp[(fβ)α]

in which F is the cumulated probability of failing, f the measured strength value, α the first of shape parameter, and β the second or scale parameter.

The minimum applicable strength value fmin can be determined by the following expression:

(3) fmin=β[ln11F]1α

in which the cumulated probability F of failing has a low value, e.g. 0.0001.

When the scatter of strength measurements is extremely important, or the minimum strength value is certainly larger than zero, straight application of the two parameter Weibull distribution is of no meaning and should be replaced by a more complex method leading to the use of three parameter Weibull distributions, expressed as:

(4) F(f;α,β)=1exp[(fγβ)α]

in which γ is the third parameter, or the minimum value of the strength. Or in other words, the weakest link.

It should also be taken into account that the parameters shall be considered as distributions 𝒟 of random variables with a mean value and a variance:

(5) 1st, or shape parameter: α=𝒟(αm,Varα)

(6) 2nd, or shape parameter: β=𝒟(βm,Varβ)

(7) 3rd, or shape parameter: γ=𝒟(γm,Varγ)


Quantification method

In order to quantify the three parameters, and especially the third one, the weakest link, a relative large number of data should be available, grouped in series. Those series have to be obtained from measurement pieces drawn from lots, where each lot should be considered as more or less homogeneous. The estimation of the parameters then may follow the following iterative procedure:

step i: Use the three parameter Weibull distribution, however declare the third parameter γmin=0. Put each series of data into that distribution by means of a best fitted method. This gives for each series the parameters α and β. For a best fitting method, see reference [1].

step ii: With those parameters α and β, calculate a specific value and range, e.g. the average fa value and the range Rp2p1=fp2fp1 with possibly p1=0.05 and p2=0.95.

step iii: Place all pairs of specific range/specific value, here as example the Rp2p1/fa pairs, into a Cartesian diagram with as abscise the specific range and as ordinate the specific value. The result should be a stretched cloud pointing to the ordinate.

step iv: Calculate the trend, or regression line and calculate the specific value when the specific range equals to zero. The value obtained, fa,R=0, is also the average third parameter γa,R=0.

step v: Calculate the best estimation of the residual standard deviation sr, needed for the estimation of the lower value of the third parameter, the real weakest link γmin, with the expressions:

(8) sr=Kf1r2n2 and (9) Kf=i=1nfa21n(i=1nfa)2

where Kf is the square sum of the average fa values, n is the number of pairs, and r is the correlation factor.


step vi: Calculate the lower value of the third parameter by means of

(10) γmin=γa,R=0u.sr

where u is de eccentricity of the normal distribution, e.g. u=1.64 for a probability of 0.05.

step vii: Replace the used third parameter in step i by the γmin value estimated in step vi. Repeat steps i to vii until the difference between last and fore last value is sufficient small.

Conditions for representation

In order to select a most representative number of strength measurement series of the entire, more or less inhomogeneous population, but ensuring within each lot a most representative homogeneous number of measurement pieces, some conditions should be taken into account.

a) The number of series should represent a sufficient time interval of production of the concerned material. A population consisting out of up to five series is certainly too small, a population from six to ten series may lead to doubtful results.

b) The number of measurement pieces per series should be recommended to have at least 10 pieces. The test pieces for one series should be selected randomly from one lot manufactured within a production interval that may be assumed to be as homogeneous as possible.

c) The measurement pieces per series should be of one size: the measurement pieces of different series should differ in size.

Examples of possible minimum numbers of measurement series:

Threads: From each of e.g. four production intervals or lots, spread over a production period of one month, where each production of threads is as homogeneous as possible, a first series of tensile measurements should consist out of measurement pieces of length l, a second series should consist out of measurement pieces of 3 times l and a third series should consist out of measurement pieces of 10 times l. So in total 12 series of tensile measurement pieces.

Annealed flat glass: From each of e.g. four production intervals or lots, spread over a production period of some months, where each production of annealed flat glass is as homogeneous as possible (e.g. series could be taken from one very large sheet of glass), a first series should consist out of measurement pieces of surface A1, a second series should consist out of measurement pieces of surface A2, and a third series should consist out of measurement pieces of surface A3. For various surfaces, refer to the series of international standards CEN ISO 1288 (reference [2]). So in total 12 series

Computer generated example

An example with computer generated data is given below.

Measurement pieces:

- 4 lots, where each lot contains 3348 strength numbers;

- each lot deliver 3 series of measurement pieces, where the pieces contain 121, 25 or 9 strength numbers, in respectively the first, second and third series;

- each series consists out of 12 measurement pieces;

- total 4 x 3 x 12 = 144 measurement pieces;

- strength numbers fi are randomly distributed following the expression

(11) fi=20+4μ0+[(40+40μ0)(μ1+μ2)]

Figure 1

where

μ0

is a random variable related to lots with values between 0 end 1, and

μ1

and

μ2

are random variables related to any stress number, also with values between 0 and 1;

Third parameter estimation:

The steps i to vii have been performed two times. The result is graphically given in figure 1. The stability of the method has been investigated by repeating the whole process 20 times. The averaged minimum third parameter value γmin was 16.2 by a standard deviation sγmin=2.2.

References

[1] Strength of Materials

[2] Typical glass type bending strength - Jacob Zwart - International Glass review, Flat Glass, Issue 3, 1999.

[3] European/International standard series CEN ISO 1288 - Glass in Building - Determination of the bending strength of glass.