Transwiki:Integral (examples)

From testwiki
Jump to navigation Jump to search

Template:BookifyTemplate:Tw-adopt

Example 1

Consider the function f(x)=7. Suppose we search for 311f(x)dx.

f(x)dx =7dx
=7x0dx
=7x+C,C
C is the arbitrary constant of integration. While evaluating the definite integral below, I (arbitrarily) choose the antiderivative where C = 0.
3117dx =[7x]311
=7721=56

Example 2

Consider the function f(x)=x4+1+2sin(x). Suppose we search for 68f(x)dx.

f(x)dx=x4dx+1dx+2sin(x)dx
=x55+x+C2sin(x)dx
=x55+x+C2cos(x)
68f(x)dx=[x55+x2cos(x)]68
=(855+82cos(8))(655+62cos(6))
=+5000.408.

Example of integrals of an irrational function

f(x)=1(x2+a2)32f(x)dx=xa2x2+a2+C

First part of the solution:

f(x)dx=(x2+a2)32dx
=(x2(1+a2x2))32dx
=x3(1+a2x2)32dx
=(1+a2x2)32(x3dx)

Perform the following substitution:

u=1+a2x2
dudx=2a2x3x3dx=du2a2

Second part of the solution:

(1+a2x2)32(x3dx)=
=u32(du2a2)
=12a2u32du
=12a2(2u)+C(C)
=1a21+a2x2+C
=(xx)1a21+a2x2+C
=xa2x2+a2+C

Alternate method

Using the trigonometric substitution x=atanθ, then dx=asec2θdθ and x2+a2=asecθ (when π/2<θ<π/2).

f(x)dx=1(x2+a2)32dx
=1a3sec3θasec2θdθ
=1a2cosθdθ
=1a2sinθ+C
=1a2atanθasecθ+C
=xa2x2+a2+C