Trigonometry/Multiple-Angle and Product-to-sum Formulas

From testwiki
Jump to navigation Jump to search

Multiple-Angle Formulas

  • sin(2a)=2sinacosa
  • cos(2a)=cos2asin2a=12sin2a=2cos2a1
  • tan(2a)=2tana1tan2a

..................................................................................................

Proofs for Double Angle Formulas

Using the Sum and Difference Identities

Recall that:
cos(a+b)=cos(a)cos(b)sin(a)sin(b)

Using a = b in the above formula yields:

  cos(2a)=cos(a+a)=cos(a)cos(a)sin(a)sin(a)=cos2(a)sin2(a)

From the last (rightmost) term, two more identities may be derived. One containing only a sine:

  cos(2a)=cos2(a)sin2(a)=cos2(a)sin2(a)+0=cos2(a)sin2(a)+[sin2(a)sin2(a)]=[cos2(a)+sin2(a)]2sin2(a)=12sin2(a)

And one containing only a cosine:

  cos(2a)=cos2(a)sin2(a)=cos2(a)sin2(a)+0=cos2(a)sin2(a)+[cos2(a)cos2(a)]=2cos2(a)[cos2(a)+sin2(a)]=2cos2(a)1


sin(a+b)=sin(a)cos(b)+sin(b)cos(a) ; a = b for sin(2a)

  sin(a)cos(a)+sin(a)cos(a)=2cos(a)sin(a)=sin(2a)

Template:Trigonometry:Navigation